Kv1 channels and neural processing in vestibular calyx afferents

نویسندگان

  • Frances L. Meredith
  • Matthew E. Kirk
  • Katherine J. Rennie
چکیده

Potassium-selective ion channels are important for accurate transmission of signals from auditory and vestibular sensory end organs to their targets in the central nervous system. During different gravity conditions, astronauts experience altered input signals from the peripheral vestibular system resulting in sensorimotor dysfunction. Adaptation to altered sensory input occurs, but it is not explicitly known whether this involves synaptic modifications within the vestibular epithelia. Future investigations of such potential plasticity require a better understanding of the electrophysiological mechanisms underlying the known heterogeneity of afferent discharge under normal conditions. This study advances this understanding by examining the role of the Kv1 potassium channel family in mediating action potentials in specialized vestibular afferent calyx endings in the gerbil crista and utricle. Pharmacological agents selective for different sub-types of Kv1 channels were tested on membrane responses in whole cell recordings in the crista. Kv1 channels sensitive to α-dendrotoxin and dendrotoxin-K were found to prevail in the central regions, whereas K(+) channels sensitive to margatoxin, which blocks Kv1.3 and 1.6 channels, were more prominent in peripheral regions. Margatoxin-sensitive currents showed voltage-dependent inactivation. Dendrotoxin-sensitive currents showed no inactivation and dampened excitability in calyces in central neuroepithelial regions. The differential distribution of Kv1 potassium channels in vestibular afferents supports their importance in accurately relaying gravitational and head movement signals through specialized lines to the central nervous system. Pharmacological modulation of specific groups of K(+) channels could help alleviate vestibular dysfunction on earth and in space.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Zonal variations in K+ currents in vestibular crista calyx terminals.

We developed a rodent crista slice to investigate regional variations in electrophysiological properties of vestibular afferent terminals. Thin transverse slices of the gerbil crista ampullaris were made and electrical properties of calyx terminals in central zones (CZ) and peripheral zones (PZ) compared with whole cell patch clamp. Spontaneous action potential firing was observed in 25% of cur...

متن کامل

Low-voltage-activated potassium channels underlie the regulation of intrinsic firing properties of rat vestibular ganglion cells.

Individual primary vestibular afferents exhibit spontaneous activity the regularity of which can vary from regular to irregular. Different aspects of vestibular responsiveness have been associated with this dimension of regularity of resting discharge. Isolated rat vestibular ganglion cells (VGCs) showed heterogeneous intrinsic firing properties during sustained membrane depolarization: some ne...

متن کامل

Comparative morphology of rodent vestibular periphery. I. Saccular and utricular maculae.

Calyx afferents, a group of morphologically and physiologically distinct afferent fibers innervating the striolar region of vestibular sensory epithelia, are selectively labeled by antibodies to the calcium-binding protein calretinin. In this study, the population of calretinin-stained calyx afferents was used to delineate and quantify the striolar region in six rodent species: mouse, rat, gerb...

متن کامل

Regeneration of vestibular horizontal semicircular canal afferents in pigeons.

Spontaneous regeneration of vestibular and auditory receptors and their innervating afferents in birds, reptiles, and amphibians are well known. Here, we produced a complete vestibular receptor loss and epithelial denervation using an ototoxic agent (streptomycin), after which we quantitatively characterized the afferent innervation of the horizontal semicircular canals following completed rege...

متن کامل

Regeneration of vestibular otolith afferents after ototoxic damage.

Regeneration of receptor cells and subsequent functional recovery after damage in the auditory and vestibular systems of many vertebrates is well known. Spontaneous regeneration of mammalian hair cells does not occur. However, recent approaches provide hope for similar restoration of hearing and balance in humans after loss. Newly regenerated hair cells receive afferent terminal contacts, yet n...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 9  شماره 

صفحات  -

تاریخ انتشار 2015